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Abstract—Light-field cameras have now become available in both consumer and industrial applications, and recent papers have

demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current light-field depth estimation

methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. The standard Lambertian

photoconsistency measure considers the variance of different views, effectively enforcing point-consistency, i.e., that all views map to

the same point in RGB space. This variance or point-consistency condition is a poor metric for glossy surfaces. In this paper, we

present a novel theory of the relationship between light-field data and reflectance from the dichromatic model. We present a

physically-based and practical method to estimate the light source color and separate specularity. We present a new photo consistency

metric, line-consistency, which represents how viewpoint changes affect specular points. We then show how the new metric can be

used in combination with the standard Lambertian variance or point-consistency measure to give us results that are robust against

scenes with glossy surfaces. With our analysis, we can also robustly estimate multiple light source colors and remove the specular

component from glossy objects. We show that our method outperforms current state-of-the-art specular removal and depth estimation

algorithms in multiple real world scenarios using the consumer Lytro and Lytro Illum light field cameras.

Index Terms—Light fields, 3D reconstruction, specular-free image, reflection components separation, dichromatic reflection model

Ç

1 INTRODUCTION

LIGHT-FIELDS [1], [2] can be used to refocus images [3].
Cameras that can capture such data are readily

available in both consumer (e.g., Lytro) and industrial (e.g.,
Raytrix) markets. Because of its micro-lens array, a light-
field camera enables effective passive and general depth
estimation [4], [5], [6], [7], [8]. This makes light-field cameras
point-and-capture devices to recover shape. However, cur-
rent depth estimation algorithms support only Lambertian
surfaces, making them ineffective for glossy surfaces, which
have both specular and diffuse reflections. In this paper, we
present the first light-field camera depth estimation algo-
rithm for both diffuse and specular surfaces using the con-
sumer Lytro and Lytro Illum cameras (Fig. 1).

We build on the dichromatic model introduced by Sha-
fer [9], but extend and apply it to the multiple views of a sin-
gle point observed by a light field camera. Since diffuse and
specular reflections behave differently in different view-
points, we first discuss four different surface cases (general
dichromatic, general diffuse, Lambertian plus specular,
Lambertian only). We show that different cases lead to

different structures in RGB space, as seen in Fig. 2, ranging
from a convex cone (for general dichromatic case), a line
passing through the origin (for general diffuse case), a gen-
eral line (for Lambertian plus specular case), to the standard
single point (for Lambertian only case). Notice that standard
multi-view stereo typically measures the variance of differ-
ent views, and is accurate only when the data is well
modeled by a point as for Lambertian diffuse reflection. We
refer to this as point-consistency since we measure consis-
tency to the model that all views correspond to a single
point in RGB space; this distinguishes from the line-
consistency condition we develop in conjunction with the
dichromatic model. The dichromatic model lets us under-
stand and analyze higher-dimensional structures involving
specular reflection. In practice, we focus on Lambertian
plus specular reflection, where multiple views correspond
to a general line in RGB space (not passing through the ori-
gin, see Fig. 2c).

We show that our algorithm works robustly across many
different light-field images captured using the Lytro light-
field camera, with both diffuse and specular reflections. We
compare our specular and diffuse separation against
Mallick et al. [10], Yoon et al. [11], and Tao et al. [6], and our
depth estimation against Tao et al. [5], [6], Wanner
et al. [12], and Lytro software (Figs. 11, and 12). Our main
contributions are:

1. Dimensional analysis for dichromatic model (Section 3).
We investigate the structure of pixel values of differ-
ent views in the color space. We show how different
surface models will affect the structure, when
focused to either the correct or incorrect depth.
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2. Depth estimation for glossy surfaces (Sections 4.4, 4.5).
For glossy surfaces, using the point-consistency
condition to estimate depth will give us wrong
depth. We introduce a new photo-consistency depth
measure, line-consistency, which is derived from our
dichromatic model analysis. We also show how to
combine both point-consistency and line-consistency
cues providing us a robust framework for general
scenes. Our method is based on our initial work
(Tao et al. [6]), but we have more robust and better
results, and there is no iteration involved.

3. Color estimation and specular-free image (Sections 4.3,
4.6). We perform the multiple viewpoint light source
analysis by using and rearranging the light-field’s
full 4D epipolar plane images (EPI) to refocus
and extract multiple-viewpoints. Our algorithm
(Algorithm 1) robustly estimates light source color,
and measures the confidence for specular regions.
The framework distinguishes itself from the tradi-
tional approach of specular and diffuse separation
for conventional images by providing better results
(Figs. 8, 9, 10, 11, and 12) and supporting multiple
light source colors (Figs. 5 and 11).

2 RELATED WORK

Depth estimation and specular removal have been studied
extensively in the computer vision community. In our
work, we show that light fields give us more information to
remove specularities. We generalize the photo-consistency
measure, introduced by Seitz and Dyer [14], to both point
and line consistency, which supports both diffuse and
glossy surfaces. Our algorithm is able to robustly estimate
depth in both diffuse and specular edges.

2.1 Defocus and Correspondence Depth Estimation

Depth estimation has been studied extensively throughmul-
tiple methods. Depth from defocus requires multiple expo-
sures [15], [16]; stereo correspondence finds matching
patches from one viewpoint to another viewpoint(s) [17],
[18], [19], [20]. The methods are designed for Lambertian
objects and fail or degrade for glossy or specular surfaces,
and also do not take advantage of the full 4D light-field data.

2.2 Multi-View Stereo with Specularity

Exploiting the dichromatic surface properties, Lin et al. [21]
propose a histogram based color analysis of surfaces. How-
ever, to achieve a similar surface analysis, accurate corre-
spondence and segmentation of specular reflections are
needed. Noise and large specular reflections cause inaccu-
rate depth estimations. Jin et al. [22] propose a method
using a radiance tensor field approach to avoid such corre-
spondence problems, but real world scenes do not follow
their tensor rank model. In our implementation, we avoid
the need of accurate correspondence for real scenes by
exploiting the refocusing and multi-viewpoint abilities in
the light-field data.

2.3 Diffuse-Specular Separation and Color
Constancy

In order to render light-field images, Yu et al. [23] propose
the idea that angular color distributions will be different

when viewing at the correct depth, incorrect depth, and
when the surface is occluded in some views. In this paper,
we extend the Scam model to a generalized framework for
estimating both depth and specular and diffuse separation.
Separating diffuse and specular components by transform-
ing from the RGB color space to the SUV color space such
that the specular color is orthogonal to the light source color
has been effective; however, these methods require an accu-
rate estimation of or known light source color [10], [24],
[25]. Without multiple viewpoints, most diffuse and specu-
lar separation methods assume the light source color is
known [10], [11], [26], [27], [28], [29], [30]. As noted by
Artusi et al. [31], these methods are limited by the light
source color, prone to noise, and work well only in con-
trolled or synthetic settings. To alleviate the light source
constraint, we use similar specularity analyses as proposed
by Sato and Ikeuchi and Nishino et al. [32], [33]. However,
prior to our work, the methods require multiple captures
and robustness is dependent on the number of captures.
With fewer images, the results become prone to noise. We
avoid both of these problems by using the complete 4D EPI
of the light-field data to enable a single capture that is
robust against noise. Estimating light source color (color
constancy) exhibits the same limitations and does not
exploit the full light-field data [34], [35]. Since we are esti-
mating the product of light source color and the albedo for
each pixel independently, we can estimate more than just
one light source color.

2.4 Light-Field Depth Estimation

More recent works have exploited the light-field data by
using the epipolar images [4], [5], [6], [7], [8], [12], [36], [37].
Because all these methods assume Lambertian surfaces,
glossy or specular surfaces pose a large problem. Wanner
and Goldluecke [38] propose a higher order tensor structure
to estimate geometry of reflecting surfaces. The method
struggles with planarity of reflecting surfaces as stated in
the paper. Heber and Pock [39] propose an optimization
framework that enforces both low rank in the epipolar
geometry and sparse errors that better estimate specular
regions. However, because the framework assumes sparse
errors, we show that the method fails in regions with highly
reflective surfaces and glare (Figs. 11 and 12). Moreover, the
optimization framework is computationally expensive. In
our work, we use the full 4D light-field data to perform
specular and diffuse separation and depth estimation.
Using our line-consistency measure, we directly address the
problem of estimating depth of specular regions. In our
comparisons, we show that specularities cause instabilities
in the confidence maps computed in Tao et al. [5]. The insta-
bilities result from high brightness in specular regions and
lower brightness in diffuse regions. Even at the most point-
consistent regions, the viewpoints do not exhibit the same
color. However, because of the large contrast between the
neighborhood regions, these regions still register as high
confidence at wrong depths. The incorrect depth and high
confidence cause the regularization step by Markov random
fields to fail or produce incorrect depth propagation in most
places, even when specularities affect only a part of the
image (Figs. 1, 11, and 12).
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A preliminary version of our algorithm was described
in [6]. In this paper, we built upon a theoretical foundation
as described in Section 3.1 to justify our algorithm. Based on
the theory, we improved results and removed the necessity
of an iterative approach.

3 THEORY OF DIMENSION ANALYSIS

In this section, we explain the dichromatic model and its
induced color subspace from multiple views of a point,
imaged by a light field camera (Section 3.1). By analyzing
the pixel values in color space, we can get the type of BRDF
of the point (Section 3.2). Unlike previous dichromatic anal-
yses, we consider multiple views of a single point, that
allows us to estimate multiple light sources over the entire
object. We show how to use the insights from our color anal-
ysis to develop algorithms for depth estimation from light
fields (Section 3.3, 4). Our practical algorithm is described in
Section 4.

3.1 Dichromatic Reflection Model

We first analyze the color values at multiple views from a
point/pixel on the object. The dichromatic BRDF model [9]
states that light reflected from objects has two independent
components, light reflected from the surface body and at
the interface, which typically correspond to diffuse and
specular reflection. The observed colors among the view-
points are then a part of the span between the diffuse and
specular components,

Ið�; nn; ll; vvÞ ¼ Idð�; nn; ll; vvÞ þ Isð�; nn; ll; vvÞ; (1)

where I is the radiance. � is the wavelength of light (in prac-
tice, we will use red, green and blue, as is conventional). nn is
the surface normal, and vv indicates the viewing direction.
We assume a single light source with ll being the (normal-
ized) direction to the light. Since our analysis applies

separately to each point/pixel on the object, we can con-
sider a separate light source direction and color at each
pixel, which in practice allows us to support multiple lights.
As is common, we do not consider inter reflections or occlu-
sions in the theoretical model. Next, each component of the
BRDF r can be decomposed into two parts [9]:

rð�; nn; ll; vvÞ ¼ kdð�Þrdðnn; ll; vvÞ þ ksð�Þrsðnn; ll; vvÞ; (2)

where kd and ks are diffuse and specular spectral reflectan-
ces, which only depend on wavelength �. rd and rs are dif-
fuse and specular surface reflection multipliers, which are
dependent on geometric quantities and independent of
color. Now, consider the light source Lð�Þ, which interacts
with diffuse and specular components of the BRDF:

Ið�; nn; ll; vvÞ ¼ Lð�Þ � rð�; nn; ll; vvÞ � ðnn � llÞ
¼ Lð�Þ � ½ðkdð�Þrdðnn; ll; vvÞ
þ ksð�Þrsðnn; ll; vvÞ� � ðnn � llÞ:

(3)

Here we use � to represent component-wise multiplica-
tion for different wavelengths, usually used as color chan-
nels ðR;G;BÞ, and where actual � indicates a dot product
with a scalar (or vector).

Now we consider images taken by light-field cameras.
For each point on the object, we can get color intensities
from different views. In other words, for a given pixel, nn
and ll are fixed while vv is changing. Therefore, we can sim-
plify rdðnn; ll; vvÞ and rsðnn; ll; vvÞ as rdðvvÞ and rsðvvÞ. Further-
more, we encapsulate the spectral dependence for diffuse

and specular parts as �Ldð�Þ and �Lsð�Þ:

IðvvÞ ¼ Lð�Þ � ½ðkdð�ÞrdðvvÞ þ ksð�ÞrsðvvÞ� � ðnn � llÞ
¼ ½ �Ldð�ÞrdðvvÞ þ �Lsð�ÞrsðvvÞ� � ðnn � llÞ ; (4)

Fig. 1. Depth Estimation for Glossy Surfaces. Our input is a light-field image. We use PBRT [13] to synthesize a red wood textured glossy sphere with
specular reflectance Ks ¼ ½1; 1; 1� and roughness ¼ 0:001 with four light sources of different colors (a). We use two photoconsistency metrics: point-
consistency and line-consistency. By using point-consistency, we obtain depth measures suitable for diffuse only surfaces, but exhibit erroneous
depth (b) and high confidence (c) at glossy regions due to overfitting data. By using the light-source color estimation (d), we seek a depth where the
colors from different viewpoints represent a line, with direction corresponding to light-source color, which we call line-consistency. The new depth
measurement gives correct depths at specular edges (e), but exhibits low confidence values everywhere else. We highlighted the difference of the
edges by highlighting in white. The comparison between the two can be seen in Fig. 3. We use both of the cues to perform a depth regularization that
produces an optimal result by exploiting the advantages of both cues (g). With the analysis, we can also extract a specular-free image (h) and an esti-
mated specular image (i). In this paper, we provide the theoretical background of using the two metrics. Note: The specular colors are enhanced for
easier visibility throughout the paper. For depth maps, cool to warm colors represent closer to farther respectively, and for confidence maps, less con-
fident to more confident respectively, with a scale between 0 and 1.
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where

�Ldð�Þ ¼ Lð�Þ � kdð�Þ;
�Lsð�Þ ¼ Lð�Þ � ksð�Þ:

3.2 Type of BRDF and Dimension Analysis

Assuming the object surface fits the dichromatic reflection
model, we can use Eq. (4) to analyze pixel values from
multiple views. Now we discuss how those pixel values
lie in RGB color space, for various simplifying assump-
tions on the BRDF. Table 1 shows a summary. In addi-
tion, we use a synthetic sphere to verify the analysis, as
shown in the top two rows of Fig. 2. In practice, we use
the common Lambertian plus specular assumption, but
the theoretical framework applies more generally, as dis-
cussed below.

General Diffuse plus Specular. For the general dichromatic
case, the pixel values from multiple views are

IðvvÞ ¼ ½ �Ldð�ÞrdðvvÞ þ �Lsð�ÞrsðvvÞ� � ðnn � llÞ (5)

as derived from Eq. (4). The color of diffuse component
�Ldð�Þ is in general different from the specular part �Lsð�Þ. In
addition, rdðvvÞ and rsðvvÞ are scalars that vary with view-
point. Therefore, the pixel value is a linear combination of
diffuse color and specular color. Pixel values from different
views of a point will lie on a convex cone, a plane spanned
by diffuse and specular colors. The synthetic result is shown
in Fig. 2a. Since the variance of the diffuse component is
usually much smaller than the specular component, most of
the variation is dominated by the effect of specular color.
When the viewing direction changes and the specular com-
ponent is no longer dominant, the pixel values will be closer

TABLE 1
Dimension Analysis of Different Types of BRDF with One Light Source

Type of BRDF General diffuse
plus specular

General
diffuse

Lambertian diffuse
plus specular

Lambertian
diffuse

Dimension
analysis

Convex cone (on a plane) Line passing through the origin Line not passing the origin Point

½ �Ldð�ÞrdðvvÞ þ �Lsð�ÞrsðvvÞ� � ðnn � llÞ �Ldð�ÞrdðvvÞ � ðnn � llÞ ½c � �Ldð�Þ þ �Lsð�ÞrsðvvÞ� � ðnn � llÞ c � �Ldð�Þ � ðnn � llÞ

Fig. 2. Synthetic data for dimension analysis of different types of BRDF with one light source. The synthetic data is generated by PBRT [13] to simu-
late the Lytro camera. Note that for the general diffuse surface, we use a view-dependent spectral reflectance kd for the sphere. The center images
are linearly scaled for display. The scatter plots are pixel intensities in RGB color space from 49 different views, imaging the location where the red
arrow points. All pixel values are scaled to ½0; 1�. Synthetic data shows that when the light field image is refocused to the correct depth, the result
corresponds to our dimension analysis (Table 1).
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to the diffuse color (around the dashed line), but still on the
convex cone.

General Diffuse

IðvvÞ ¼ �Ldð�ÞrdðvvÞ � ðnn � llÞ: (6)

If the object surface does not have a specular component,
the dichromatic model can be simplified as Eq. (6). When
there is only one light source, �Ldð�Þ is fixed and
rdðvvÞ � ðnn � llÞ is a scalar. Thus, all possible values will lie on a
line, which passes through the origin. Fig. 2b shows the
result.

Lambertian Diffuse plus Specular

IðvvÞ ¼ ½c � �Ldð�Þ þ �Lsð�ÞrsðvvÞ� � ðnn � llÞ : (7)

Now we consider the most common case, where the diffuse
component is modeled as Lambertian as in most previous
work, and there is a specular component. This is the case
we will consider in our practical algorithm.

In other words, rdðvvÞ is now a constant (replaced by c
here), independent of the viewing angle. Under this
assumption, the dichromatic model becomes Eq. (7). For dif-

ferent views, �Ldð�Þ is a constant and �Lsð�ÞrsðvvÞ is a line
passing through the origin. Combining the two compo-
nents, pixel values in color space will be a line not passing
through the origin. Fig. 2c shows the result.

A further simplification is achieved for dielectric materi-
als, where the specular reflection takes the light source
color, or ksð�Þ is a constant, independent of wavelength. In

this case, �Lsð�Þ corresponds directly to the light source
color, and our practical algorithm is able to estimate
the color of the light. In fact, we can handle multiple light
sources, since we can assume a separate light affects the
specular component for each pixel or group of pixels. Note
that the common dielectric assumption is not fundamental
to our algorithm, and is needed only to relate the light
source color to that of the highlight.

Lambertian Diffuse

IðvvÞ ¼ c � �Ldð�Þ � ðnn � llÞ: (8)

Next, we consider the BRDF with Lambertian diffuse com-
ponent only. In Eq. (7), c and ðnn � llÞ are all constants. There-
fore, all the color intensities should be the same for different
views of a point. Indeed, this is just re-stating the notion of
diffuse photo-consistency. In effect, we have a single point
in RGB space, and we call this point-consistency in the rest of
the paper, to distinguish from the line-consistency model we
later employ for Lambertian plus specular surfaces.

3.3 Depth Estimation

Figs. 2a, 2b, 2c, and 2d verify the dichromatic model applied
to light field data, considering multiple views of a single
point. However, this analysis assumes we have focused the
light field camera to the correct depth, when in fact we want
to estimate the depth of a glossy object. Therefore, we must
conduct a novel analysis of the dichromatic model, where
we understand how multiple views behave in color space, if
we are focused at the incorrect depth. This is shown in the
bottom row of Fig. 2, and to our knowledge has not been
analyzed in prior work.

For a depth estimation method to be robust, the structure
when focused to the incorrect depth must be intrinsically
different from that at the correct depth; otherwise depth
estimation is ambiguous. Indeed, we will see in Figs. 2e, 2f,
2g, and 2h that pixel values usually either lie in a higher-
dimensional space or have higher variance.

General diffuse plus specular. When the image is refocused
to the incorrect depth, different views will actually come
from different geometric locations on the object. Since our
test image is a sphere with a point light, each point has a dif-
ferent value for rdðvvÞ and ðnn � llÞ. In addition, some of the
neighboring points have only the diffuse part (since rsðvvÞ is
close to 0). Therefore, the pixel values have a wider span on
the convex cone, as shown in Fig. 2e, where fitting a line
will result in larger residuals.

General diffuse. Since each view has a different intensity
due to different ðnn � llÞ and rdðvvÞ, pixel values from different
views will usually span a wider section of a line, as shown
in Fig. 2f.

Lambertian Diffuse plus Specular. The specular color com-
ponent at neighboring points will have differing rsðvvÞ, simi-
lar to the case when focused at the correct depth. However,
the variations are larger. The diffuse color component also
now varies in intensity because of different ðnn � llÞ values at
neighboring points.

When focused at the correct depth, the points lie in a line,
which we call line-consistency. At an incorrectly focused
depth, the RGB plot diverges from a line. However, as seen
in Fig. 2g, this signal is weak; since the diffuse intensity vari-
ation is much less than the specular component, different
views still lie almost on a line in RGB space for incorrect
depth, but usually with a larger variation than when
focused to the correct depth. Therefore, we need to combine
point-consistency for Lambertian-only regions. We will use
this observation in our practical algorithm.

Lambertian diffuse. Different views have different values
for the ðnn � llÞ fall-off term (the sphere in Fig. 2 is not tex-
tured). However, all the points have the same diffuse color.
Thus, pixel values lie on a line passing through the origin,
as shown in Fig. 2h. Again, point-consistency is a good
photo-consistency measure for Lambertian diffuse surfaces,
since it holds when focused at the correct depth and not at
incorrect depths.

4 DEPTH ESTIMATION ALGORITHM

We now describe our practical algorithm, that builds on the
theoretical model. We assume Lambertian plus specular
materials, as in most previous work. The photo-consistency
condition can be generalized to line-consistency, that esti-
mates a best fit line. This provides a better measure than the
point-consistency or simple variance in the Lambertian case.
We then use a new regularization scheme to combine both
photo-consistency measures, as seen in Fig. 1. We show in
Section 4, how point and line-consistency can be combined
to obtain robust depth estimation for glossy surfaces. If we
want higher order reflection models, we can use best-fit
elements at higher dimensions for the analysis.

We will also assume dielectric materials where the specu-
lar component is the color of the light source for most of our
results, although it is not a limitation of our work, and Eq. (7)
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is general. The assumption is needed only for relating light
source color to that of the highlight, and does not affect depth
estimation. In Tao et al. [6], we used an iterative approach of
estimating the light source color line direction to generate
the specular free and specular images and depth estimation
just using Lambertian point-consistency. This iterative
approachmay lead to convergence problems in some images
and artifacts associated with specular removal affect depth
results. In this paper, we designed our new algorithm that
uses both light source color estimation and depth estimation
that exploits photo-consistency.We show that this eliminates
the need for an iterative approach and achieves higher qual-
ity results in Figs. 10 and 11.

Since we now use the generalized photo-consistency
term for specular edges, the new depth-error metric is
as follows:

� Lambertian only surfaces, the error metric is the
variance across the viewpoints (point-consistency
measure).1

� Lambertian plus specular surfaces, the error metric is
the residual of the best fit line, where the slope of the
line represents the scene light source chromaticity
(line-consistency measure).

The depth metrics have strengths and weaknesses, as
summarized in Fig. 3. For point-consistency, diffuse edges
exhibit high confidence and meaningful depth. However,
for specular edges, the error is large with high confidence.
The high confidence is caused by the fact that the specular
regions are much brighter than the neighborhood pixels.
Although true point-consistency does not exist, the point-
consistency metric between close to point-consistency and
otherwise is large among depths. Therefore, incorrect high

confidence is common. With line-consistency, the measure
is accurate at specular edges with high confidence. But,
with the line-consistency measure, the depth estimation for
diffuse regions is unstable. Even at incorrect depth (Fig. 2h),
the points lie in a line. The line-consistency measure will
register both correct and incorrect depth as favorable due to
the low residuals of a best fit line. Texture also will intro-
duce multiple lines as different colors from neighborhood
pixels may register new best-fit-lines. Therefore, depth val-
ues are noisy and confidence is lower. For both point and
line-consistency, it is important to note that more prominent
edges yield higher confidence and meaningful depth esti-
mations. Therefore, saturated pixels, often observed in large
specular patches, and smooth diffuse surfaces require data
propagation.

Our algorithm addresses the following challenges of
using the two metrics:

� Identifying diffuse only and glossy surfaces. We need to
identify which pixels are part of a diffuse only or
glossy surface to determine which depth-error met-
ric better represents each surface or region.

� Combining the two measures. Point-consistency is
a good measure for diffuse surfaces and line-
consistency is a good measure for specular surfaces.
We need to combine the two measures effectively.

� Angularly saturated pixels. Because of the small base-
line of light-field cameras, at specular regions, surfa-
ces with all view points saturated are common. We
mitigate this problem through hole-filling, as
described in Section 4.6.

4.1 Algorithm Overview

Our algorithm is shown in Algorithm 1. The input is the
light-field image Iðx; y; u; vÞ with ðx; yÞ spatial pixels and,
for each spatial pixel, ðu; vÞ angular pixels (viewpoints). The
output of the algorithm is a refined depth, Z�, and specular
S and diffuseD components of the image, where I ¼ Dþ S.

Fig. 3. Point-consistency versus Line-Consistency. For point-consistency, diffuse edges exhibit high confidence and meaningful depth. However, for
specular regions, the error is large with high confidence. With line-consistency, diffuse regions register depth values that are noisy and lower confi-
dence. For specular regions, line-consistency is accurate at the edges with high confidence. For both, it is important to note that the metrics have
high confidence where edges are present. Therefore, saturated pixels, often observed in large specular patches, and smooth surfaces require data
propagation. Although saturated specular regions still have high errors, we can see that line-consistency has a much lower confidence than the
point-consistency metric.

1. In our implementation, we used both the Lambertian photo-con-
sistency and defocus measure from Tao et al. [5]. We then combine the
two as a measure by using the depth values with maximum confidence.
This provided us cleaner results. For simplicity of the paper, we will
still call the measure point-consistency.
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Algorithm 1. Depth Estimation with Specular Removal

1: ap; Cp ¼ PointConsistencyðIÞ "Section 4.2
2: L� ¼ LightSourceColorðI; apÞ "Section 4.3
3: al; Cl ¼ LineConsistencyðI; L�Þ "Section 4.4
4: Z� ¼ DepthRegularizationðap; Cp;al; ClÞ "Section 4.5
5: D;S ¼ SpecularFreeðI; L�Þ "Section 4.6

The algorithm consists of five steps:

1. Point-consistency measure. We first find a depth esti-
mation using the point-consistency measure for all
pixels. For diffuse surfaces, this error metric will
give us accurate depth to distinguish between
Figs. 2d, 2h (line 1, Section 4.2).

2. Estimate light-source color. For specular surfaces, ana-
lyzing the angular pixels ðu; vÞ allows us to estimate
the light-source color(s) of the scene and determine
which pixels are specular or not. (line 2, Section 4.3).

3. Line-consistency measure. Given the light-source color,
we then find a depth estimation using the line-
consistency measure for all pixels. For specular
edges, we will then obtain the correct depth to distin-
guish between Figs. 2c and 2g (line 3, Section 4.4).

4. Depth regularization. We then regularize by using the
depth and confidences computed from steps 1 and 3
(line 4, Section 4.5).

5. Separate specular. Because we are able to identify the
light-source color, we are able to estimate the intensity
of the specular term for each pixel. We use this to esti-
mate a specular-free separation (line 5, Section 4.6).

4.2 Point-consistency Depth Measure [Line 1]

Given the input image Iðx; y; u; vÞ, with ðx; yÞ spatial pixels
and ðu; vÞ angular pixels, as an initial depth estimation, we
use the point-consistency metric that measures the angular
(viewpoint) variance for each spatial pixel. We first perform
a focus sweep by shearing. As explained by Ng et al. [3], we
can remap the light-field input image given the desired
depth as follows:

Iaðx; y; u; vÞ ¼ Iðx0; y0; u; vÞ;

x0 ¼ xþ u 1� 1

a

� �
;

y0 ¼ yþ v 1� 1

a

� �
;

(9)

where a is proportional to depth. We take a ¼ 0:2þ 0:007 � Z
where,Z is a number from 1 to 256.

As proposed by Tao et al. [40], we compute a point-con-
sistency measure for each spatial pixel ðx; yÞ at each depth a

by computing the variance across the angular viewpoints,
ðu; vÞ as follows,

Epðx; y;aÞ ¼ s2
ðu;vÞðIaðx; y; u; vÞÞ; (10)

where s2
ðu;vÞ is the variance measure among ðu; vÞ. To find

apðx; yÞ, we find the a that corresponds to the lowest Ep for
each ðx; yÞ. The confidence Cpðx; yÞ of apðx; yÞ is the Peak
Ratio analysis of the responses [41]. However, the point-
consistency error metric is a poor metric for specular

regions because point-consistency cannot be achieved with
the viewpoint dependent specular term, as shown in Eq. (7)
and Figs. 2 and 3.

4.3 Estimating Light Source Chromaticity,
L� [Line 2]

Before we can use the line-consistency depth measure in
Line 3, we need to reduce overfitting by finding the light
source color from point-consistency depth, and then opti-
mizing the depth for line-consistency with the estimated
light source color.

Although point-consistency does not provide us a correct
depth measure for specular edges, the small variance in the
ðu; vÞ provides us enough information to estimate a line, as
shown in Fig. 4. At a depth that is far from the point-consis-
tency depth, the viewpoints contain neighboring points
with different albedo colors (Fig. 4d). This throws off light
source color estimation. By using the viewpoints from a
point-consistency depth, the influence from neighboring
points is reduced and we get a line with a slope that is very
close to the true light source color (Fig. 4c).

To find the set of angular pixels that represent ap, we use
the following remapping,

Iapðx; y; u; vÞ ¼ Iðx0ðapðx; yÞÞ; y0ðapðx; yÞÞ; u; vÞ: (11)

We estimate Li, where i represents each color channel (R,
G, or B). For a spatial pixel ðx; yÞ, we estimate the slope of
the RGB line formed by Iapðu; vÞ. For each ðx; yÞ, we find the
direction of the best fit line by using the SVD of the color
values across ðu; vÞ for each ðx; yÞ. The first column of the
right singular vector contains the RGB slope. Since we are
interested in just the line direction, we measure the chroma-
ticity, Li ¼ Li=ðL1 þ L2 þ L3Þ.

Fig. 4. Line Estimation. With the same input image scene as Fig. 1 and
sampled point (a), we plot the the angular pixels at the point-consistency
depth, Iapðu;vÞ (b). By using the angular pixels, we can estimate the light
source color (estimated line shown in blue) accurately (ground truth
shown in red). With point-consistency, we reduce the influence of colors
from neighboring points but still have enough color variation to estimate
the light-source color (c). Without using the point-consistency set of
angular pixels, we can see that neighborhood pixels from the sphere
throw off the line estimations (shown in dotted green lines) (d).
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L now gives us the light source chromaticity measure for
each spatial pixel, ðx; yÞ in the image. Theoretically, we are
now able to estimate N light source colors given N spatial
pixels in the image. However, in most cases, such estimation
tends to be noisy in real data. We perform k-means cluster-
ing to the number of light sources, which is set by the user.
For simplicity of the paper, we will use L� as one light-
source color. In Fig. 5, we show two real-world examples
where we have two light sources. In both scenarios, our
algorithm estimates L� that is very similar to the ground
truth. In Fig. 6, we can see that the four light source colors
are estimated from the sphere input.

4.4 Line-Consistency Depth Measurement [Line 3]

Given the chromaticity of the light source, L�ðx; yÞ, we can
then compute the line-consistency measure. For each a, we
have two parts to the error metric: first, is to find depths that
have angular pixels that observe the same L� chromaticity
and second, is to find the residual of the estimated line.

We compute a light-source similarity metric to prevent
other lines, such as the diffuse only line, occlusions, and
neighborhood points from influencing our depth measure-
ment. We first compute the estimated light-source color at a
to compare against our estimated L�. To do so, we use the
same formulation as in Section 4.3, where we used SVD to
estimate the line direction. Given the estimated L�, we com-
pute the measure,

ELs Similarity ¼ jjLaðx; yÞ � L�ðx; yÞjj: (12)

For each ðx; yÞ and a, we then compute the residual of the
line defined by La, where smaller residuals represent a bet-
ter line fitting

Eres ¼
X

i¼ðu;vÞ
r2i ; (13)

where ri is the residual of each angular pixel in ðu; vÞ.

Given the two measures, we can then compute the line-
consistency error metric.

Elðx; yÞ ¼ ELs Similarity � Eres: (14)

To find alðx; yÞ, we find the a that corresponds to the

lowest El for each ðx; yÞ. The confidence Clðx; yÞ of alðx; yÞ is
the Peak Ratio analysis of the responses.

4.5 Depth Regularization [Line 4]

Given the two depth estimations from point-consistency,

ap, and line-consistency, al and their respective confiden-

ces, Cp and Cl, we need to combine the two depth meas-
ures. We use these confidences in a Markov Random
Field propagation step similar to the one proposed by
Janoch et al. [42]

Z� ¼ argmin
Z

�p

X
i

CpjZðiÞ � apðiÞj

þ�l

X
i

CljZðiÞ � alðiÞj

þ�flat

X
i

@ZðiÞ
@x

����
����
ðx;yÞ

þ @ZðiÞ
@y

����
����
ðx;yÞ

 !

þ�smooth

X
i

jðDZðiÞÞjðx;yÞ;

(15)

where i 2 ðx; yÞ, �p is amultiplier for enforcing the data term,
�flat is a multiplier for enforcing horizontal piecewise depth,
and �smooth is multiplier for enforcing the second derivative
smoothness. Given the confidences, we are able to propagate
two data terms. The MRF enables us to retain the benefits of
both depth measures and mitigate the disadvantages, as

shown in Fig. 3. Cp is high and Cl is low in diffuse regions,
giving us the advantages of the point-consistency measure.

However,Cl is high in specular regions, giving us the advan-
tages of the line-consistency measure. After combining the
two measures, in Fig. 1, we show that depth estimation arti-
facts from glossy regions are reduced.

In our implementation, we use �p ¼ �l ¼ 1, �flat ¼ 2, and
�smooth ¼ 1.

4.6 Estimating Specular Free Image [Line 5]

So far we have light source chromaticity and depth estima-
tion. Separating diffuse and specular components is useful
in some applications but not required for depth. To separate
the two components, we need to estimate the specular

Fig. 5. Estimating Multiple Light-Sources. By using our L� estimation on
the scene with two highly glossy cans with two light sources (a), we can
see that the estimated L� (b) is consistent with the ground truth (e). The
RMSE for the green and red light-sources are 0.063 and 0.106 respec-
tively. Even with semi-glossy crayons (c), the light source estimation is
consistent (d). The RMSE for the green and red light-sources are
0.1062 and 0.0495 respectively. We took photos directly of the light sour-
ces for ground truth.

Fig. 6. Light-Source Estimation. With input image (a), we estimate the
light-source color, L, for each pixel as shown in (b). We use the k-means
clustering method to estimate the light-source color, L� of the scene (c).
The light source colors match the ground-truth, starting from top left to
bottom right, with RMSE of 0.0676, 0.0790, 0.0115, and 0.0555. In
Section 4.6.1, we show how we measure the specular intensity (d) of
each pixel to estimate specular-free images.
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intensity to separate diffuse and specular. From Eq. (7), for
each ðu; vÞ,

IZ� ¼ ½c � �Ldð�Þ þ L�
irsðvvÞ� � ðnn � llÞ

¼ ½c � �Ldð�Þ � ðnn � llÞ þ L�
i � w�;

(16)

where IZ� is the light-field image mapped to Z�, L�
i is the

light-source chromaticity and w is the specularity intensity
measure dependent on ðu; vÞ. The L�

i estimated in Section 4.3

takes place of the �Lsð�Þ in Eq. (7). The goal is to estimate w,
as shown in Fig. 6.

4.6.1 Estimating Specular Intensity, w

A straightforward way to estimate specular intensity is to
use the fitted-line with L� and subtract each ðu; vÞ based on
their position on the line. However, the results become
noisy and introduce artifacts. To alleviate the artifacts,
we categorize each ðu; vÞ pixel in IZ� as diffuse only or dif-
fuse plus specular angular pixels. We used a conservative
approach by clustering the pixels on the line into the two
groups. From Eq. (1), for each spatial pixel ðx; yÞ, we catego-
rize the pixels as

hc � �Ldð�Þ � ðnn � llÞiðu; vÞ ¼ min IZ�ðu; vÞ;
h �Lsð�ÞrsðvvÞ � ðnn � llÞiðu; vÞ ¼ wðu; vÞ � L�;

(17)

where h:i denotes expected value. To estimate the specular
intensity, we compute w as follows,

wðu; vÞ ¼ ðIZ� ðu; vÞ �min IZ� ðu; vÞÞ=L�: (18)

In a Lambertian diffuse plus specular case, ðu; vÞ pixels
that deviate more from the minimum will have a higher
wðu; vÞ. In a diffuse only case, since all the spatial pixels
have point-consistency, wðu; vÞ ¼ 0. In Fig. 6, we show that
our method estimates both the light source colors and the
specular intensity.

4.6.2 Removing Specularities Angularly

We want to average diffuse pixels in ðu; vÞ to replace the
specularity pixels, while preserving the diffuse pixels. To
remove specularities, we use a weighted average approach
by averaging angular pixels ðu; vÞ within the same spatial
coordinate ðx; yÞ

Dðx; y; u; vÞ ¼ 1

jjW jj
X
ðu;vÞ

Wðx; y; u; vÞ � IZ� ðx; y; u; vÞ

Wðx; y; u; vÞ ¼ 1� wðx; y; u; vÞ
Sðx; y; u; vÞ ¼ IZ�ðx; y; u; vÞ �Dðx; y; u; vÞ

(19)

whereD is diffuse and S is specular.
Hole filling. Removing specularities angularly only works

for local estimation (edges of specular and diffuse regions).
This method does not support angularly saturated pixels,
where change in light-field viewpoints is ineffective
towards distinguishing pixels with both terms or just the
diffuse term. Since the baseline of a light-field camera is
small, angularly saturated specular terms happen often.
Therefore, to remove specularities entirely, we used simple
hole filling methods, as shown in Fig. 7.

In our implementation, we used a Poisson reconstruction
method, proposed by Per�ez et al. [43]. We seek to construct
a diffuse only image with gradients of the input image mul-
tiplied by W in Eq. (20). The gradient of the final diffuse
image is the following,

rDðx; y; u; vÞ ¼ ð1� wðx; y; u; vÞÞ � rIðx; y; u; vÞ: (20)

5 RESULTS

We verified our results with synthetic images, where we
have ground truth for the light source, and diffuse and spec-
ular components. For all real images in the paper, we used
both the Lytro classic and Illum cameras. We tested the
algorithms across images with multiple camera parameters,
such as exposure, ISO, and focal length, and in controlled
and natural scenes.

5.1 Run-Time

On an i7-4790 3.6 GHz machine implemented in MATLAB,
our previous implementation in MATLAB [6] has a runtime
of 29 minutes per iteration per Lytro Illum Image
(7;728� 5;368 pixels). To obtain reasonable results, at least
two iterations are needed, making the total runtime 100
minutes per image (including the two iterations and MRF).
Because of our new framework of using point-consistency,
we reduce the need of several neighborhood searches. Our
depth estimation takes only 2 minutes and 10 seconds. With
our spatial specular-free generation, the whole process takes
2 minutes and 30 seconds per Lytro Illum image. Compared
to Heber and Pock [39], their GPU implementation takes
about 5-10 minutes per image.

5.2 Quantitative Validation

We use PBRT [13] to synthesize a red wood textured glossy
sphere with specular reflectance Ks ¼ ½1; 1; 1� and rough-
ness 0:001 and four different colored light sources as seen in
Fig. 1. In Fig. 8, we added Gaussian noise to the input image
with mean of 0 and variance between 0 and 0:02. Our depth
RMSE shows significant improvement over Tao et al. [6].
We can see that the other methods are prone to both noise,
especially Wanner et al. [4] and glossy surfaces. Hebert and
Pock [39] show instabilities in RMSE at high noise. For the
diffuse RMSE, we can see that although noise does affect
the robustness of our separation result, we still outperform
previous work. The quantitative validation is reflected by
the qualitative results, where we see both depth and diffuse

Fig. 7. Specular removal. With just using the angular information, we are
able to reduce speckles. However, with large specular regions such as
the one from the sphere, the specular removal from angular information
can only remove partially (reducing the size of the specular highlight).
Therefore, spatial Poisson reconstruction hole filling is needed to
completely remove large saturated specular regions.

TAO ETAL.: DEPTH ESTIMATION AND SPECULAR REMOVAL FOR GLOSSY SURFACES USING POINTAND LINE CONSISTENCY WITH... 1163



and specularity separation is robust across noise levels,
even at high noise variance, 0:02.

In Figs. 5 and 6, we computed the RMSE against the
ground truth light source colors. In both real world scenes
with the glossy cans and semi-glossy crayons, the light-
source estimation exhibits low RMSE. The RMSE for the
green and red light-sources with the glossy cans are 0.063
and 0.106 respectively. The RMSE for the green and red
light sources with the semi-glossy crayons are 0.1062 and
0.0495. We computed difference between our estimated
light source color and the ground truth synthetic image in
Fig. 6. The four estimated light source colors match the
ground-truth, starting from the top left to bottom right,
with RMSE of 0.0676, 0.0790, 0.0115, and 0.0555.

In Fig. 9, we have a flat glossy surface that is perpen-
dicular to the camera. The ground truth depth is flat.
With our method, the depth estimation resembles the
ground truth with an RMSE of 0.0318. With the line-
consistency measure, we can see that diffuse areas cause
unevenness in the depth estimation with an RMSE of
0.0478. With the point-consistency measure, because of
the specularities, we can see strange patterns forming
along the specularities with an RMSE of 0.126. This result
is similar to the Lytro depth estimation, where the RMSE
is also high at 0.107.

5.3 Depth Map Comparisons

We show our depth estimation result in Figs. 10, 11, and 12.
To qualitatively assess our depth estimation, we compare
our work against Lytro software, Heber and Pock [39], Tao
et al. (13, 14) [5], [6], and Wanner et al. [4]. We tested our
algorithm through multiple scenarios involving specular
highlights and reflections.

In Fig. 10, we show three diverse examples of typical
glossy surfaces. On the top, we have a smooth cat figurine
with generally small glossy speckles. The paw is the most
noticeable feature where the specularity affects depth esti-
mations that assume Lambertian surfaces. Our depth esti-
mation preserves the details of the glossy paw, whereas the
other methods show strange paw shapes and missing
details around the body. In the princess example, we have
several area light sources with large glossy highlights. We
can see our depth result does not contain erroneous depth
registrations at these specular regions, especially at the
bow. In the Lytro depth estimation, we can see the large
patches of specularities affect the result on the bow and
face. We also can resolve the contours of the dress and that
the left arm is behind the body. Lytro and the previous
works fail to resolve the change in depth, misrepresenting
the glossy figurine. We observe similar results with the
Chip and Dale figurine with multiple colors. Our depth

Fig. 8. Qualitative and Quantitative Synthetic Results. We added Gaussian noise with zero mean and variance as the variable parameter to the input
image of Fig. 1. We compute the RMSE of our results against the ground truth diffuse image and depth map. On the left, even with high noise, we
can see that our diffuse and specular separation closely resembles the ground truth. In both cases, the algorithm is able to extract all four specular
regions. For depth maps, we can see that the depth estimation at high noise still reasonably resembles the ground truth sphere. On the right, we can
see that these qualitative results reflect the quantitative result. We see that our results outperform prior works by a significant margin.

Fig. 9. Flat Glossy Surface Results. We have a completely flat glossy surface with specular sequins throughout the image that we placed directly per-
pendicular to the camera (a). For the ground truth, the depth should be flat (b). We can see that our final result is also smooth and flat (c). The line-
consistency provides the smoothness, but has some errors in the non-glossy regions (d). The point-consistency is thrown off by some of the glossy
regions of the image (e). With the Lytro’s depth estimation, we also see that the specular regions throw-off the depth estimation (f).
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Fig. 10. Our Results. We compare our depth estimation results against Lytro software, Heber and Pock [39], Tao et al. 14 [6], Tao et al. 13 [5], and
Wanner et al. [4]; we compare our specular removal results against Mallick et al. [10], Yoon et al. [11], and Tao et al. 14 [6]. On the top, we have an
example of a smooth cat with texture and speckles. Our final depth is smooth and contains plausible shape details on the paw. We also can see that
we remove the large specularities on the stomach of the cat. In the second example, we have a figurine of a princess holding her skirt with the left
arm tilted behind her body. We can see that our depth estimation exhibits less errors at the large patches of specularities whereas the Lytro result
shows erroneous patches. Our depth algorithm is able to recover the contours of the dress and resolve depth where the left arm is behind the body.
Our algorithm removes the large specularities on the bow. With the third example of Chip and Dale, we show that our depth result resembles the
shape of the figurine. The method is able to recover the shape of the feet on the right and does not exhibit specularity depth artifacts. The specular-
ities throw off previous methods. Our result also successfully removes the glossy regions throughout the whole figurine. The red box indicated in the
input image is where our insets are cropped from.
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result is not thrown off by the specular regions and is able to
recover the shape of the figurine (as shown in the feet on the
right). Other methods show incorrect depths for the large
specular regions. Heber et al. show errors in larger specular
regions. In the Lytro depth estimation, we can see large
patches of depth errors on the face.

In Fig. 11, we show more difficult examples of shooting
through glare on glass. We can see that in both examples,
we are able to recover clean depth results whereas the other
algorithms exhibit spikes and errors throughout the image.
In the mouse example, our method is able to estimate the
outline of the mouse without the glare affecting regulariza-
tion results. We can see all previous results have non-plausi-
ble depth estimations. In the figurine of the couple, we
observe the same result. Notice on the left side of the image
where there are bright glare and reflections. In previous
works’ and Lytro’s depth estimation, large patches of errors
exist in the specular regions.

5.4 Specular-Free Image Comparisons

We first compare our specular and diffuse separation
against the ground truth in Fig. 8. We also show that our

results accurately estimate multiple light sources of real
scenes in Fig. 5. We compare our specular removal result
against Tao et al. [6], Yoon et al. [11] Mallick et al. [10] in
Figs. 10, 11, and 12. With one light-source color examples
of Fig. 10, our specularity removal accurately removes
specular regions. In both the small speckle glossy regions
(cat) and large specular regions (princess and Chip and
Dale) examples, Mallick et al. fail to remove specular
regions, Yoon et al. incorrectly remove most of the image
colors, and Tao et al. struggle with large specularities.
Both Yoon et al. and Mallick et al. incorrectly estimates
the light source color as ½1; 1; 1�, which becomes problem-
atic with scenes with non-white light source colors (e.g.,
examples that were shot through glass in Fig. 11). We mit-
igate the glare from the glass and remove the specular-
ities from the figurines (coin from the mouse and
the reflective speckles on the couple). In both examples,
our most prominent L� estimations resemble the glare
observed through the window. Even though we cannot
remove large patches of specularities such as the Yoga
mats in Fig. 12, we generate reasonable results that can be
fixed through better hole-filling.

Fig. 11. Scenes with Glare. We have a different scenario where we took photos through a window glass, where glare becomes a prominent problem
(highlighted in green). Our algorithm is robust against glare from the glass, while regularization from other algorithms propagates inconsistent results.
We also see that our algorithm removes specularities on the figurines while reducing the glare on the glass (although, does not completely remove),
while Mallick et al. and Yoon et al. struggle due to multiple colors associated with the glass. The results are made possible because we are able to
estimate multiple light-source colors, up to the number of spatial pixels in the image; whereas, traditional specular removal algorithms can only
remove a small set number of light source colors, not suitable for glare cases. In both examples, we show the six most prominent L� estimates. The
estimation closely resembles the glare from the window. Because we are using a gradient integration for hole filling, bleeding effects may appear.
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5.5 Limitations and Discussion

Although glossy edges should give different pixel values
for different views while diffuse edges do not, it is still
hard to separate them practically because of the small-
baseline nature of light-field cameras as well as the noise.
Second, saturated highlights cannot be distinguished
from a diffuse surface with large albedo value. In addi-
tion, the specular components of saturated specular
regions cannot be completely removed. However, our
confidence measure for specular regions and specular
removal help alleviate those effects. In some cases, espe-
cially scenes with large specular patches or saturated
color values, the specular-removal is not able to recover
the actual texture behind the specular regions. We show
this with an example of a glossy plastic wrapping around
a yoga mat (Fig. 12). The diffuse output is flat. However,
this does not affect the quality of our depth result that
still outperforms previous methods. With multiple light
sources, the dimensionally of pixel values from different
views can still be analyzed, if the number of light sources
are known. However, under general environment lighting
condition, it is hard to separate the component of differ-
ent light sources in the light field. Moreover, when the
texture and the light source color are similar, initial depth
estimation and specular estimation become unreliable.
Future work includes supporting more complex BRDF
models and better hole filling techniques.

6 CONCLUSION

In this paper, we first investigate the characteristics of
pixel values from different view points in color space for
different BRDFs. We then present a novel and practical
approach that uses light-field data to estimate light color
and separate specular regions. We introduced a new
depth metric that is robust for specular edges and show
how we can combine the traditional point-consistency
and the new line-consistency metrics to robustly estimate
depth and light source color for complex real world

glossy scenes. Our algorithm will allow ordinary users to
acquire depth maps using a consumer Lytro camera, in a
point-and-shoot passive single-shot capture, including
specular and glossy materials.
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