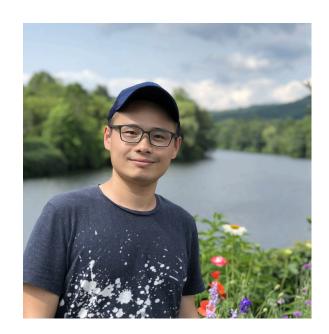


A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification

Jong-Chyi Su Zezhou Cheng Subhransu Maji



UMassAmherst

- Existing semi-supervised learning (Semi-SL) benchmarks are lacking ^[1]:
 - Curated datasets: CIFAR, SVHN, STL-10, ImageNet
 - Uniform class distribution
 - Low-resolution images
 - Unlabeled data does not contain novel class

Do Semi-SL methods work in realistic datasets?

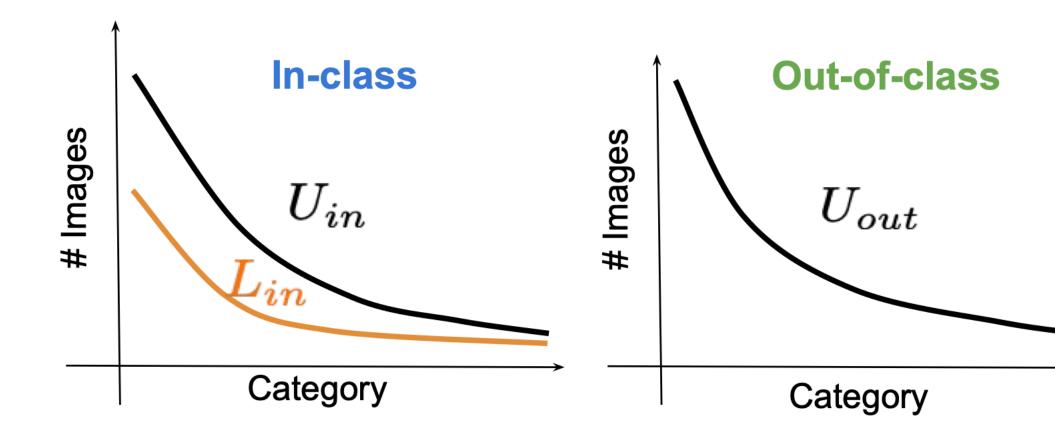
Motivation

[1] Oliver et al., Realistic evaluation of deep semi-supervised learning algorithms, NeurIPS '18

A Realistic Benchmark for Semi-SL

- Semi-Aves @ FGVC7
- 1000 bird species from iNat-18^[1]

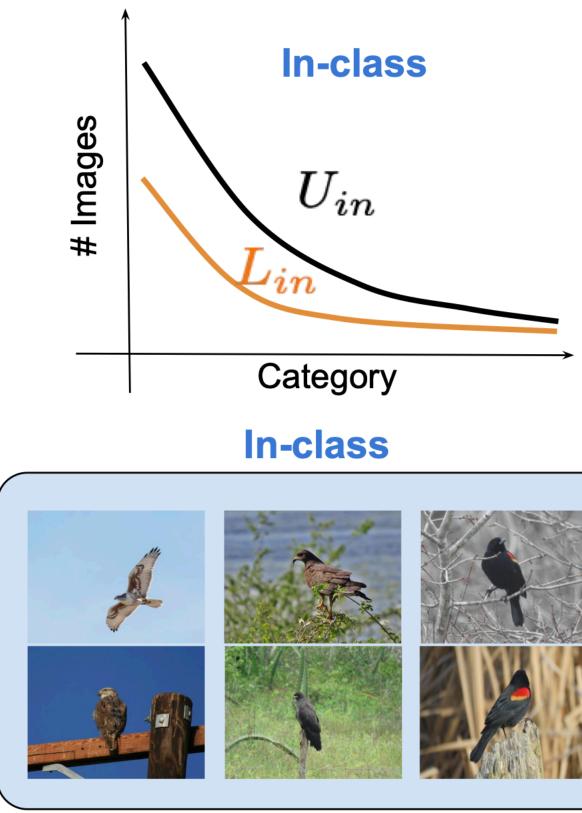
- Data splits:
 - Lin: 200 species of birds, where 10% are labeled images
 - U_{in}: same set of classes as L_{in}
 - U_{out}: different set of classes in the Aves taxa

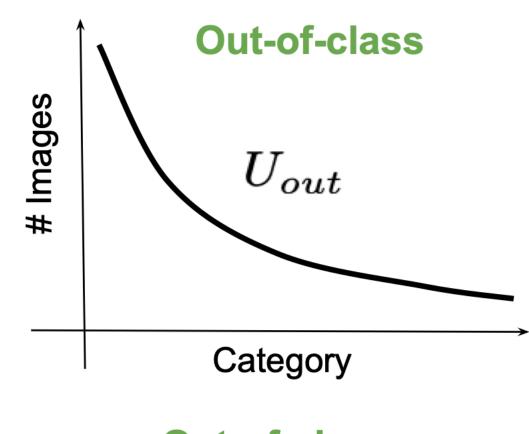


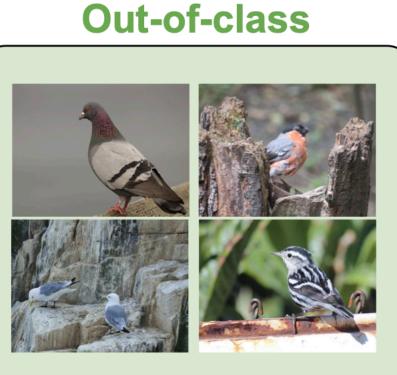
[1] van Horn et al., The iNaturalist species classification and detection dataset, CVPR, '18.

Differences from existing benchmarks:

- Long-tailed distribution of classes
- Unlabeled data contains novel classes
- Fine-grained similarity between classes







- Semi-Fungi @ FGVC5
- Semi-iNat @ FGVC8 @ CVPR '21
 - Animalia, Plantae, Fungi
 - Combine *U*_{in} and *U*_{out}
 - Coarse label

Dataset	#Classes Lin / Uin / Uout	#Images	Imbalance Ratio
Semi-Aves	200/200/800	6k/27k/122k	7.9
Semi-Fungi	200/200/1194	4k/13k/65k	10.1
Semi-iNat	810/ (2438)	10k/ (313k)	12.9

Variants

Semi-SL methods

- Pseudo-Label^[1] and Curriculum Pseudo-Label^[2]
- FixMatch^[3]
- Self-Training via Distillation^[4]
- Self-Supervised Learning (MoCo) ^[5] + Baseline
- Self-Supervised Learning (MoCo) ^[5] + Self-Training ^[6]

[1] Lee, Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks, ICML Workshop, '13. [2] Cascante-Bonilla et al., Curriculum labeling: Self-paced pseudo labeling for semi-supervised learning, arXiv, '20. [3] Sohn et al., Fixmatch: Simplifying semi-supervised learning with consistency and confidence, NeurIPS, '20. [4] Xie et al., Self-training with Noisy Student improves ImageNet classification, CVPR, '20. [5] He et al., Momentum contrast for unsupervised visual representation learning, CVPR, '20.

[6] Chen et al., Big self-supervised models are strong semi-supervised learners, NeurIPS, '20

We investigate the effects of

- Initialization: scratch / ImageNet / iNat-18 pre-trained models
- Out-of-domain data: U_{in} only or U_{in} + U_{out}

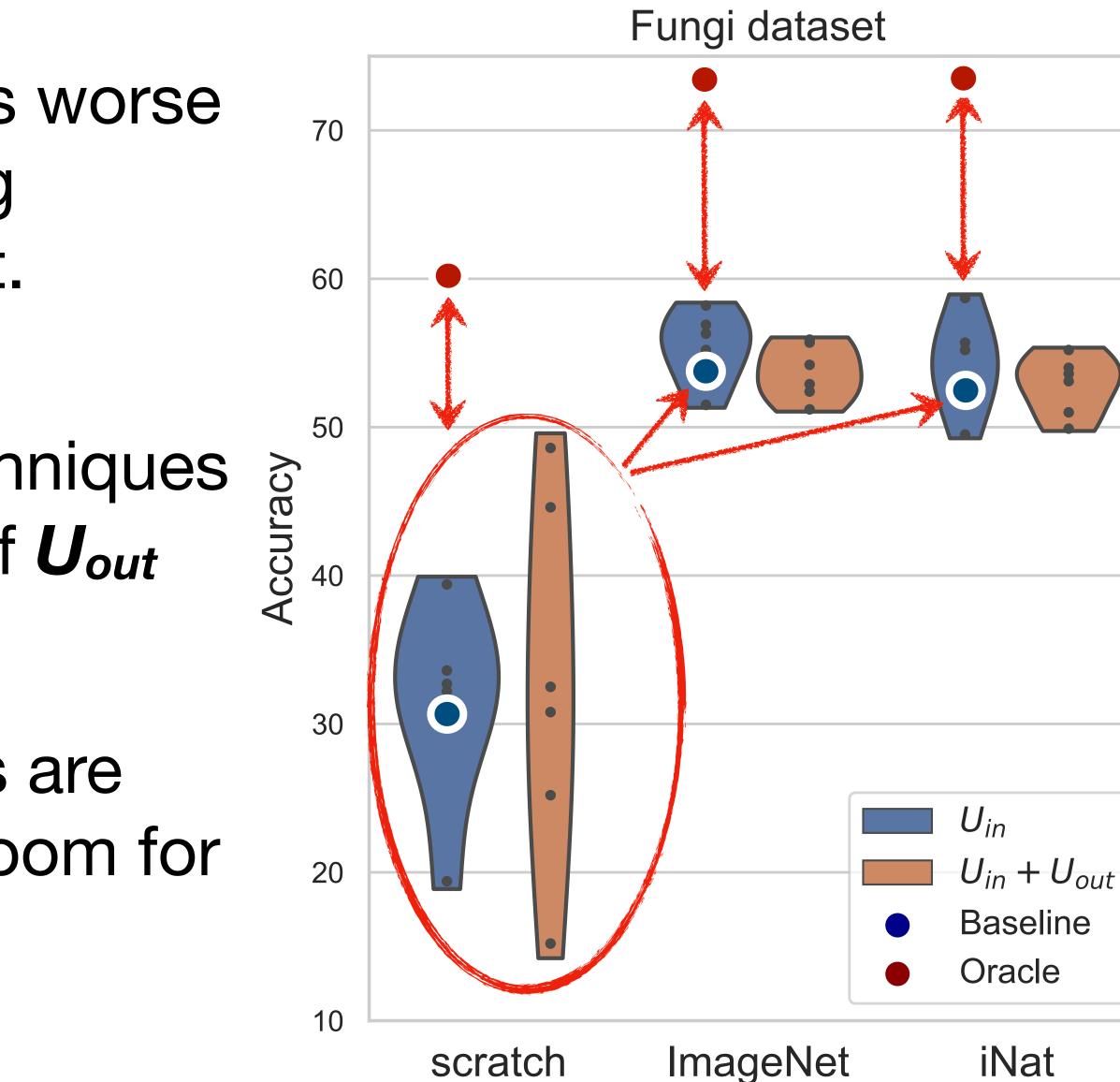
- **Baseline**: Train w/ labeled data
- Oracle: Train with fully labeled data

on the performance of ResNet50 w/ 224x224 image

Overall performances of Semi-SL methods

- Training from scratch with SSL is worse than supervised transfer learning (Baseline) from ImageNet or iNat.
- Several state-of-the-art SSL techniques are not robust to the presence of *U_{out}*

 Performance of current methods are still far below the oracle — big room for improvement!

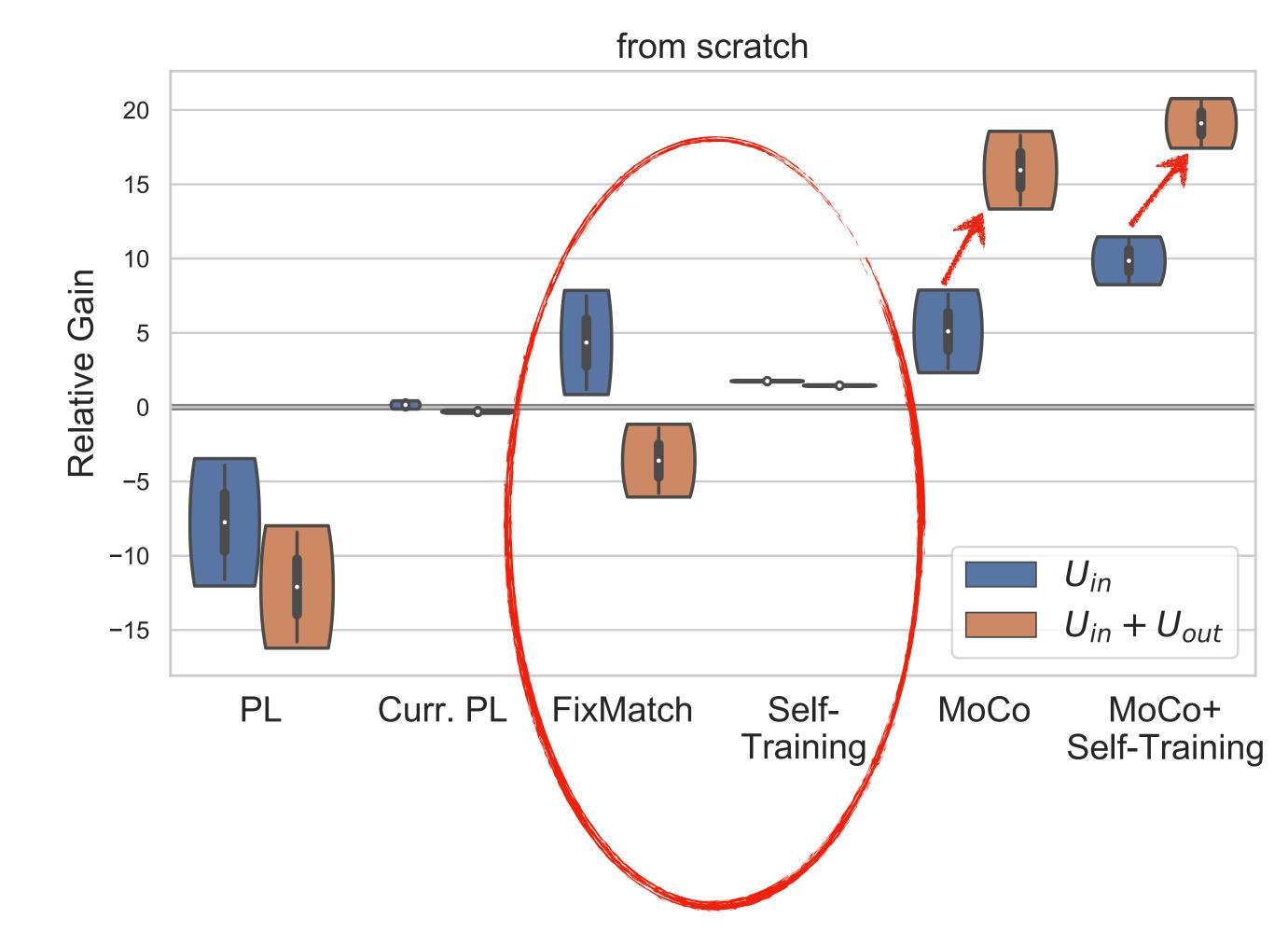


• FixMatch and Self-Training provide improvements

 Self-Supervised methods can further benefit from U_{out}

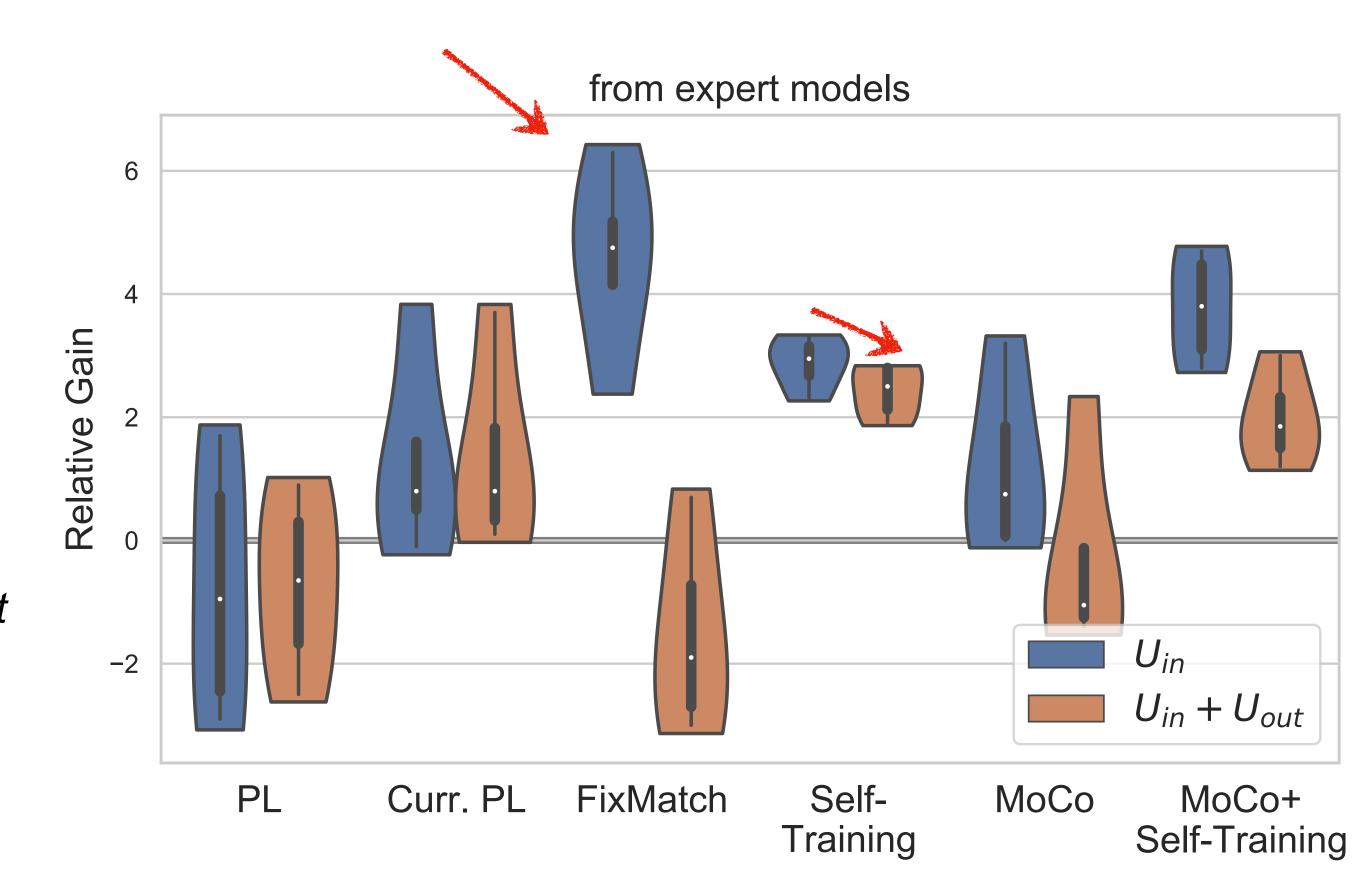
MoCo + Self-Training performs the best

Training from scratch



Training from expert models (ImageNet or iNat)

- U_{in} only: FixMatch is the best
- *U_{in}* + *U_{out}* : Self-Training is more robust
- Self-Supervised learning is not as effective here
- No method was able to reliably use Uout
 - even though the domain shift is relatively small



We created a realistic Semi-SL benchmark for fine-grained classification

- We found that:
 - Existing Semi-SL methods do not work well in realistic settings
 - Transfer learning performs better
 - U_{out} often hurts the performance
 - There is still big room for improvement!

Conclusion

11